# # # Klipper Adaptive Meshing # # # # Heads up! If you have any other BED_MESH_CALIBRATE macros defined elsewhere in your config, you will need to comment out / remove them for this to work. (Klicky/Euclid Probe) # You will also need to be sure that [exclude_object] is defined in printer.cfg, and your slicer is labeling objects. # This macro will parse information from objects in your gcode to define a min and max mesh area to probe, creating an adaptive mesh! # This macro will not increase probe_count values in your [bed_mesh] config. If you want richer meshes, be sure to increase probe_count. We recommend at least 5,5. [gcode_macro BED_MESH_CALIBRATE] rename_existing: _BED_MESH_CALIBRATE gcode: {% set all_points = printer.exclude_object.objects | map(attribute='polygon') | sum(start=[]) %} # Gather all object points {% set bed_mesh_min = printer.configfile.settings.bed_mesh.mesh_min %} # Get bed mesh min from printer.cfg {% set bed_mesh_max = printer.configfile.settings.bed_mesh.mesh_max %} # Get bed mesh max from printer.cfg {% set probe_count = printer.configfile.settings.bed_mesh.probe_count %} # Get probe count from printer.cfg {% set kamp_settings = printer["gcode_macro _KAMP_Settings"] %} # Pull variables from _KAMP_Settings {% set verbose_enable = kamp_settings.verbose_enable | abs %} # Pull verbose setting from _KAMP_Settings {% set probe_dock_enable = kamp_settings.probe_dock_enable | abs %} # Pull probe dockable probe settings from _KAMP_Settings {% set attach_macro = kamp_settings.attach_macro | string %} # Pull attach probe command from _KAMP_Settings {% set detach_macro = kamp_settings.detach_macro | string %} # Pull detach probe command from _KAMP_Settings {% set mesh_margin = kamp_settings.mesh_margin | float %} # Pull mesh margin setting from _KAMP_Settings {% set fuzz_amount = kamp_settings.fuzz_amount | float %} # Pull fuzz amount setting from _KAMP_Settings {% set probe_count = probe_count if probe_count|length > 1 else probe_count * 2 %} # If probe count is only a single number, convert it to 2. E.g. probe_count:7 = 7,7 {% set max_probe_point_distance_x = ( bed_mesh_max[0] - bed_mesh_min[0] ) / (probe_count[0] - 1) %} # Determine max probe point distance {% set max_probe_point_distance_y = ( bed_mesh_max[1] - bed_mesh_min[1] ) / (probe_count[1] - 1) %} # Determine max probe point distance {% set x_min = all_points | map(attribute=0) | min | default(bed_mesh_min[0]) %} # Set x_min from smallest object x point {% set y_min = all_points | map(attribute=1) | min | default(bed_mesh_min[1]) %} # Set y_min from smallest object y point {% set x_max = all_points | map(attribute=0) | max | default(bed_mesh_max[0]) %} # Set x_max from largest object x point {% set y_max = all_points | map(attribute=1) | max | default(bed_mesh_max[1]) %} # Set y_max from largest object y point {% set fuzz_range = range((0) | int, (fuzz_amount * 100) | int + 1) %} # Set fuzz_range between 0 and fuzz_amount {% set adapted_x_min = x_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt x_min to margin and fuzz constraints {% set adapted_y_min = y_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt y_min to margin and fuzz constraints {% set adapted_x_max = x_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt x_max to margin and fuzz constraints {% set adapted_y_max = y_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt y_max to margin and fuzz constraints {% set adapted_x_min = [adapted_x_min , bed_mesh_min[0]] | max %} # Compare adjustments to defaults and choose max {% set adapted_y_min = [adapted_y_min , bed_mesh_min[1]] | max %} # Compare adjustments to defaults and choose max {% set adapted_x_max = [adapted_x_max , bed_mesh_max[0]] | min %} # Compare adjustments to defaults and choose min {% set adapted_y_max = [adapted_y_max , bed_mesh_max[1]] | min %} # Compare adjustments to defaults and choose min {% set points_x = (((adapted_x_max - adapted_x_min) / max_probe_point_distance_x) | round(method='ceil') | int) + 1 %} # Define probe_count's x point count and round up {% set points_y = (((adapted_y_max - adapted_y_min) / max_probe_point_distance_y) | round(method='ceil') | int) + 1 %} # Define probe_count's y point count and round up {% if (([points_x, points_y]|max) > 6) %} # {% set algorithm = "bicubic" %} # {% set min_points = 4 %} # {% else %} # Calculate if algorithm should be bicubic or lagrange {% set algorithm = "lagrange" %} # {% set min_points = 3 %} # {% endif %} # {% set points_x = [points_x , min_points]|max %} # Set probe_count's x points to fit the calculated algorithm {% set points_y = [points_y , min_points]|max %} # Set probe_count's y points to fit the calculated algorithm {% set points_x = [points_x , probe_count[0]]|min %} {% set points_y = [points_y , probe_count[1]]|min %} {% if verbose_enable == True %} # If verbose is enabled, print information about KAMP's calculations {% if printer.exclude_object.objects != [] %} { action_respond_info( "Algorithm: {}.".format( (algorithm), )) } { action_respond_info("Default probe count: {},{}.".format( (probe_count[0]), (probe_count[1]), )) } { action_respond_info("Adapted probe count: {},{}.".format( (points_x), (points_y), )) } {action_respond_info("Default mesh bounds: {}, {}.".format( (bed_mesh_min[0],bed_mesh_min[1]), (bed_mesh_max[0],bed_mesh_max[1]), )) } {% if mesh_margin > 0 %} {action_respond_info("Mesh margin is {}, mesh bounds extended by {}mm.".format( (mesh_margin), (mesh_margin), )) } {% else %} {action_respond_info("Mesh margin is 0, margin not increased.")} {% endif %} {% if fuzz_amount > 0 %} {action_respond_info("Mesh point fuzzing enabled, points fuzzed up to {}mm.".format( (fuzz_amount), )) } {% else %} {action_respond_info("Fuzz amount is 0, mesh points not fuzzed.")} {% endif %} { action_respond_info("Adapted mesh bounds: {}, {}.".format( (adapted_x_min, adapted_y_min), (adapted_x_max, adapted_y_max), )) } {action_respond_info("KAMP adjustments successful. Happy KAMPing!")} {% else %} {action_respond_info("No objects detected! Check your gcode and make sure that EXCLUDE_OBJECT_DEFINE is happening before BED_MESH_CALIBRATE is called. Defaulting to regular meshing.")} G4 P5000 # Wait 5 seconds to make error more visible {% endif %} {% endif %} {% if probe_dock_enable == True %} {attach_macro} # Attach/deploy a probe if the probe is stored somewhere outside of the print area {% endif %} _BED_MESH_CALIBRATE mesh_min={adapted_x_min},{adapted_y_min} mesh_max={adapted_x_max},{adapted_y_max} ALGORITHM={algorithm} PROBE_COUNT={points_x},{points_y} {% if probe_dock_enable == True %} {detach_macro} # Detach/stow a probe if the probe is stored somewhere outside of the print area {% endif %} # End of verbose